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INTRODUCTION

It was assumed in [1], when investigating the equilibrium stability of a viscoelastic fluid, that tempera-
ture perturbation vanishes at the planes bounding the layer. These conditions correspond to the limiting case
of boundaries with an infinite thermal conductivity. In the case where the dividing boundaries have a finite
thermal conductivity, the penetration of temperature perturbations into the body of the fluid must be taken into
account. The present paper considers the stability problem of a layer of viscoelastic fluid confined between
two semiinfinite masses of finite thermal conductivity.

In the general case of a viscoelastic fluid the stress tensor at a point in the medium is given as a func-
tional of the history of the strain [2]. Particular rheological models can be obtained by specifying the form of
the functional kernels. '

Methods for measuring the material constants appearing in the rheological equations are complicated and
require complex rheological devices.

Information obtained from viscometric flow cannot be used for nonviscometric flow [3].

In the latter case the number of material functions appearing in the defining relations [4] increases.
Thus, in each particular case the contribution from additional functionals describing all the interactions al-
lowed by the appropriate symmetry must be estimated for the case of nonviscometric flow.

Assuming that the memory of the fluid decays fairly rapidly, and that the rate of strain is negligible, we
can represent the stress tensor for the case treated in this paper in the form of the integral model discussed
previously in [1].

We shall consider a horizontal layer of viscoelastic fluid heated from below which is bounded by the

planes z=0 and z=d. The layer is bounded by semiinfinite solid masses whose thermal conductivities »; and
¥, are different from each other and from the thermal conductivity » of the fluid (see Fig. 1).

In the Boussinesq approximation the amplitude equations for perturbations in the fluid are written as
follows:

{(D? — &®)[P(c)Pr(D? — a%) — c]}W = PrRac’0; (1)
D —a®—0)0 =—W. @)

The following equation is valid for the temperature perturbations in the masses:
(D?—a? — ox: )8,=0 (s=1,2), 3)

where W and @ are the amplitudes of velocity and temperature perturbations in the fluid; ﬁs =%g/¥%; ¥g is the
thermal conductivity of the boundaries; Pr, Ra are the Prandtl and Rayleigh numbers; a is the wave number;

o is the perturbation decrement; ¥ (o) = 1y - SN (v} (1 + ot)"'dv, N(7) is the distribution function of relaxation
0 .
times; 74 is the largest Newtonian viscosity; and D= 8/9z. Here the variables have been made dimensionless

by division by the following quantities; the distance is divided by the layer thickness d, the time by dz/x{ ,the
velocity by x/d, and the temperature by $d. Here x is the thermal diffusivity of the fluid, 8 = (T'y—T)) /4.
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Fig. 1
TABLE 1
- M=o,  mp=x =0, Ry=x K=Ry=x
Pr A %
Ray ‘ ax l [OF Ras l dx | Ox Ras [+ 9% Wy
o | (230,0) | (7,3) (76,6)
o | 2287 6,7 71,32 | 231,3 170 73,8 {228,7 | 6,7 | 71,3
0,1 {200} 2289 70 73,91 | 2325 (7.0 73,7 (2314 | 6,5 |69,4
0,20| 2296 7.3 76,55 | 2341 {7,0) 73,6 | 2326 |71 74,6
0,02] 2311 7.4 77,42 | 2350 |7,0| 73,65 2334 | 7,0 | 73,8
10 —
© (7,49 | (4,72) (20,77)
© 7,08 4,9 24,15 7,23 |54] 2211 7,08] 49 | 21,15
10 2,00 7.01 4,6 20,63 7.45 46| 206! 7.01] 48 |20,95
10,20 744 5,0 21,3 7,28 148 20,9 7,31 50 |21,25
0,02 7.10 5.1 21,3 7,24 |48] 209] 7,27 48 [209
0,00 6,84 5,0 21,3 6,84 150/ 21,3] 6,84 50 [21,3
o | (130,1) | (11,96) | (385,8)
o | 129,5 11,94 381,2 {1350 8,41276,11129,5 [ 11,9 [381,2
0.4 2,00} 133,4 8,3 2725 1351 8,4]276,01130,0 | 8,4 |276,0
0,20 134,5 8,3 2721 11353 8,31273,21133,1 | 84 12760
100/ 0,021 185,5 8,3 271,0  1135,6 8,3]273,011350 | 84 |276,1
o | (2,209 |( 7,29 (83,45) 5
© 22001 7,29 83,51 208 1640 7661 22010 7,29]83,51
1,0 12,00 2,032 6,31 75,91 2,00 16,4| 76,6] 2.08| 6,41]76,6
0,20 2,037 6,30 75,9 209 |64 76,61 209]| 6401|766
0,02 2,038 6,3 75.9 203 169] 7381 209 5,40]76,6

The boundary conditions for amplitude perturbations, appropriate for the present problem, are

6 =0,% DB, =uDO for z=10;

6 = 0,, D8, = DB for z = 1; )
W= DW =0 foo z=0,; “)
0, = 0,0 for z— oo,

The spectrum of decrements ¢ and of the corresponding characteristic perturbations can be determined
from the homogeneous boundary problem (1)-(4). Monotonic or oscillatory instability arises depending on the
properties of the fluid, It has been established that for a Newtonian fluid the "principle of monotonic perturba-
tions" is valid and that the stability threshold is defined by the value where the decrement becomes zero [5, 6].
The presence of elasticity in non-Newtonian viscoelastic fluids is an additional destabilizing factor, and the
principle in question is violated [1].

Galerkin's method is applied to solve the problem. Following [7] we adopt an approximation of the form
W = g5*(1 — 2)?, )

where the coefficient q is chosen from the normalizing condition and is set equal to unity in view of the homo-
geneity of the problem. We now use Eq. (5) to determine the temperature perturbation in the fluid layer from

Eq. 2):

€ = Cyshkz + Cy oh kz + 2tk — (2IR)2* + [(12 + K)/R12 —(12/k)5 + 212 + KRS,
where K = % + 0.

689



When Eq. (4) is taken into account, the solution of Eq., (3) can be represented in the form
6, = 4 exp (7:2), 0, = B exp lyu(1 — 3)],

where y, = ya® + o/x,.

The constants C;, C,y, A, and B are determined from the boundary conditions for temperature (4). The
expressions for C; and C,, necessary for determining the critical Rayleigh number, turn out to be fairly cum-
bersome and difficult to review and so are not given here. For the particular case of the absence of oscil-
latory instability, when the substitution %g =1/%g is made, the values of C, and C,, as well as the magnitude
of the critical Rayleigh number, coincide completely with the data of [7].

The integral condition of Galerkin's method leads to the function for the appearance of oscillatory in-
stability. When the neutral state is characterized by o =iw the expression is the complex viscosity. The value
of the Rayleigh number is

__ DDy 4 D,D,

DyDy— DD
Ra_ 9ol/3 14 6)
DEr D} (

2 2 !
D+ D}

+i
where

D, = (Pr/630m,)(504+-24a® + a%);
D, = (1/630n0)fony(12 + a?) — Prn(a* + 244> + 504)|;
D, = Pra®M/630(at 4 ©?)3; D, = Pra®N/630(a* + 0?)?
M = M(a, o, Cy, Cyy p, q; N = N(a, o, Cy, Cs, p, q.

Setting the imaginary part of Eq. (6) equal to zero defines the wave number as a function of the oscilla-
tion frequency w:

p = Rel(@® + iw)':], g = Iml(a® + o).

Equation (6) gives the value of the critical Rayleigh number as a function of the following parameters: the
wave number « , the ratios of the thermal conductivities of the masses g, the elasticity parameter, the oscil-
lation frequency, and the Prandtl number. The critical Rayleigh number was determined on a model "M-222"
computer for the case when the following relations are valid for the components of the complex viscosity:

0 =/l + (@h)2), 7" = neer/11 + (wh)?],

where A is the Maxwell relaxation time. The parameter A =Ay/d? a measure of the elasticity, is the ratio of
the relaxation time of the stresses to the thermal relaxation time. In the general case the complex viscosity is
determined from dynamic experiments as a function of the frequency. The dimensionless frequency has the
form w =wd?/x, and so the quantity d2/x should be determined for real fluids.

Those values of w were chosen from the set of roots of the equation a = a(w) which gave the least real
value of Ra.

, Values of the calculated critical parameters Rax, @+, wx, corresponding to loss of stability, are given in
Table 1, from which it can be concluded that the thermal conductivity of the boundaries has a negligible effect
on the appearance of oscillatory instability (values of the critical parameters from [8] are given inthe brackets).
For a Newtonian fluid the stability is monotonically reduced as the thermal conductivity of the bounding

masses decreases, while the wavelength of critical perturbations increases [7].

Oscillatory instability is encountered in fluids where the ratio of the relaxation time to the thermal re-
laxation time is large [1]. The penetration of temperature perturbations into the masses increases the effec-
tive dimensions of the regions where perturbations exist. The relatively greater freedom for the development
of temperature perturbations leads to a decrease in the relaxation time of the fluid, and inhibits the appearance
of oscillatory instability, while the presence of boundaries with finite thermal conduetivity leads to a reduction
in stability [51.

The joint occurrence of these two phenomena leads to the result that the thermal conductivity of the
boundaries exerts no appreciable effect on the appearance of oscillatory instability. If the relaxation time de-
creases sufficiently for the fluid to be regarded as having a very short memory, then instability arises through
the stationary state.
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GENERAL THEORY OF HEAT AND MASS EXCHANGE

IN CHEMICALLY REACTIVE SYSTEMS IN MECHANICAL
EQUILIBRIUM WITH ELECTRIC FIELD WITHIN

THE FRAMEWORK OF THERMODYNAMICS OF IRREVERSIBLE
PROCESSES

A. S. Pleshanov UDC 530.161/,162

General analysis of the effects of chemical reactions on the processes of heat and mass transfer has
been the subject of many investigations (see literature cited in [1]). Such an analysis for mechanical equilib-
rium systems in symmetrical form was given in [2]. In the present article it is shown that a description of
chemical processes in the special meaning of the term can be carried out independently of heat and mass trans-
fer.

The processes which take place in a mechanical equilibrium (at rest) system consisting of k chemical
components K;(i, j =1, ..., k), among which r independent reactions Rg(s, t=1, ..., r) occur,aredescribed
by k continuity equations,

de,
P%Z ;+ diVIi = Emivisesa (1)
s

where, in addition to other notation, c¢; is mass fraction; Ij is diffusion flow; mj is molecular weight, g/ mole;
s is the rate of Rg, mole/cm?- sec; vig is stoichiometric coefficient of K; in Rg. Moreover, we have the
mechanical equilibrium condition

v p = pzE, )

where z is the free charge per unit of mass, as well as the energy equation which in usual notation is given
by

dpeldt + divq = (JE). 3)
The system (1)-(3) is supplemented by the Gibbs relation,
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